您的位置: 首页 > 院士专题 > 专题列表

共检索到746条,权限内显示50条;

[前沿资讯] 格尔木盐碱地试种海水稻已成活 进入全文

经济日报

7月2日,在格尔木河西农场7连的70亩海水稻试验田里,绿油油的海水稻田里水汪汪的当天灌溉过水。因为刮风,准备给海水稻施肥的无人机在等待合适的时机。在试验田里,记者见到青岛九天智慧农业集团有限公司育种工程师张国东蹲在地头查看秧苗的生长情况,他拔出长势不好的青苗给记者讲解青苗生根情况。在格尔木试种海水稻是有史以来第一次。张国东说:“此次试种,是青海昆瑶国际贸易有限公司与我们青岛九天智慧农业集团有限公司引进的。”据了解,袁隆平青岛海水稻团队旗下的青岛九天智慧农业集团有限公司利用在育种和种质资源方面的技术优势,通过自主研发的“四维改良法”技术,根据格尔木市土壤情况,从要素物联网系统、土壤定向调节剂、植物生长调节素及抗逆性作物四个方面优化最优配比,通过水稻耐盐碱试验、耐寒试验、耐旱试验等方法,筛选和培育耐寒耐旱水稻品种,培育高原寒地“海水稻”,利用最新科技成果促进地方农业现代化转型,打造“盐碱地改良+海水稻种植+数字化农业”的方式试种海水稻。张国东坦言,按照目前情况看,从育苗大棚栽植到试验田里部分海水稻材料(品种)初步成活,毕竟是第一次试验,无论如何都是结果,这种试验是需要时间的,有多种因素和问题都要考虑到,目前,成活也是一个结果,最终这17个材料表现怎样,得等到9月份才会出结果。此次海水稻试种,格尔木市各级部门比较关注。在海水稻试验田现场,记者遇到农业科学研究所所长曾纪勇,他头戴着遮阳帽在试验田边,联系的旋飞科技公司飞手准备给实验田施肥。

[前沿资讯] 农业农村部副部长于康震在《国家畜禽遗传资源目录》 贯彻实施视频推动会上的讲话 进入全文

中国畜牧信息网

同志们:经国务院批准,农业农村部今天正式公布《国家畜禽遗传资源目录》(简称《目录》),首次明确畜禽种类范围。这次会议的主要任务是统一思想认识,提高政治站位,通报《目录》制定情况,部署贯彻实施工作。刚才,广东省、吉林省和四川省分别做了典型发言,认识很深刻,措施很到位,针对性、借鉴性、建设性都很强。下面,我讲四点意见。第一,深刻认识《目录》公布的重大意义。(一)《目录》是贯彻落实党中央国务院决策部署和全国人大常委会《决定》的重要举措。1月27日,习近平总书记作出重要批示,深刻指出非法交易、滥食野生动物的突出问题及对公共卫生安全构成的重大隐患,明确提出完善相关立法、坚决取缔和严厉打击非法野生动物市场和贸易、革除滥食野生动物的陋习等要求。2月3日,习近平总书记在中央政治局常委会上明确指出,食用野生动物风险很大,但“野味产业”依然规模庞大,对公共卫生安全构成了重大隐患,再也不能无动于衷了!2月24日,全国人大常委会审议通过的《关于全面禁止非法野生动物交易、革除滥食野生动物陋习、切实保障人民群众生命健康安全的决定》(简称《决定》)第三条规定:“国务院畜牧兽医行政主管部门依法制定并公布畜禽遗传资源目录”。我部密集研究,加快推进《目录》制定工作,及时公布。这是坚决贯彻以习近平同志为核心的党中央决策部署的实际行动,是坚决贯彻实施《决定》,推进国家治理体系和治理能力现代化的具体实践。

[前沿资讯] Keeping pigs cool when temperatures spike 进入全文

Pig Progress

John van Paassen, owner of a farrow-to-finish pig farm in Deurne, the Netherlands. The farm has capacity for 440 sows and 2,750 finisher pigs. The innovation:A high-pressure fogging system that reduces the temperature of incoming air by up to 8°C. Van Paassen had tubes with nozzles installed at the air inlets – which are powered by a high-pressure sprayer. The fog will cool down incoming air by up to 5%. Humidity levels can be adjusted for each pig house, as each type of pig thrives at different levels. The innovation won in the category ‘animal welfare – solutions for heat stress’. The idea:In the Netherlands, in July 2019, temperatures went up to 41°C, which can easily lead to heat stress and affect production. In the context of global warming, such high temperatures are unlikely to be a one-off. According to van Paassen, even a short spell of very hot days could basically destroy a good annual result. Since he has various differently sized buildings, he was looking for a simple system that could be used in all his pig houses. At van Paassen’s farm, the concept is an independent element of an overall climate control system, which also keeps temperatures constant in winter. The system works on the basis of a heat exchanger connected to the air scrubbers.

[前沿资讯] Breaking the silence: scientists investigate epigenetic impact across whole genome 进入全文

AAAS

All life depends on a genome, which acts as an instruction manual for building all the products essential for development and survival. But knowing which of these individual instructions - or genes - need to be read, and when, is key for a properly functioning organism: so how does life get this right?                                      Enter epigenetic regulation - the process by which cells control the expression, or readability, of genes. In multicellular organisms, epigenetics is the reason why every type of cell varies in shape and function, with each cell type following a different subset of instructions. Cells also use epigenetic regulation as an 'immune system', suppressing the activity of disruptive 'jumping genes' called transposons that can otherwise hop around the genome and threaten its integrity.                                      Despite its importance, scientists are still struggling to untangle the many pathways that cells use to precisely control the activity of genes. Now, researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have uncovered a clue to the mystery, by looking at how plant cells suppress transcription - the first stage of how genes manufacture their products. Their findings, recently published in Nature Communications, pinpoint previously unknown sections of DNA that are silenced by epigenetic regulation, many of which originate within transposons.                                     "This study provides a comprehensive view on how and where cells suppress transcription across the whole genome," said Dr. Tu Le, first author and postdoctoral researcher in the OIST Plant Epigenetics Unit. "Importantly, we found that this silencing was vital for ensuring that genes involved in development and stress responses function properly."                                     During transcription, cellular machinery copies a section of DNA into RNA. Usually, these RNA transcripts are then used to make proteins. Cells can boost or suppress transcription by adding chemical tags to DNA or to histone proteins that package the DNA, which tell the machinery which RNA transcripts - and ultimately proteins - to produce and in what quantity.                                     This level of precise control is vital for managing transposons. "Transposons are parasites of genomes, that promote their own expression at the expense of the organism," said Professor Hidetoshi Saze, senior author of the study and leader of the Plant Epigenetics Unit. "When a transposon is active, its genetic sequence is used to manufacture a protein that can move the transposon to a different location in the genome, like cut-and paste or copy-and-paste computer functions."                                      Transposons are usually silenced, as their activity can disable important genes. But sometimes, when under stress, plants re-activate transposons as they are a source of genetic variation, potentially generating beneficial mutations that allow the plant to adapt to the changing environment.                                      "Our lab ultimately aims to determine exactly how cells recognize and regulate transposons," added Dr. Le. "This work is an important first step toward this goal."                                     Unveiling hidden sites of transcription                                      In the study, the scientists used several mutant strains of a plant called Arabidopsis thaliana, with a different epigenetic pathway disabled in each strain.                                      The team then used a sequencing technique to detect specific DNA sequences that act as starting sites for the genome's transcription machinery. They revealed thousands of these 'transcription start sites' (TSSs) that were only active in the epigenetic mutants.                                      "Many of these sites hadn't been detected in previous studies, because they are completely silenced in wildtype plants. Our discovery of these hidden - or cryptic - TSSs provides a valuable source of data for future epigenetic research in plants," said Prof. Saze.                                       The scientists identified one mutant strain of the plant that activated an especially high number of cryptic TSSs. The gene this mutant was missing encodes a key protein which maintains DNA methylation. When methyl groups are added to DNA, this epigenetic tag triggers a biochemical pathway that causes histones to pack the DNA more tightly. This physically stops transcription machinery from accessing the regions of the genome that contain the cryptic TSSs.                                     "The sheer number of cryptic TSSs activated when DNA methylation is lost shows that it is a powerful and prevalent method of silencing," said Dr. Le.                                     From transposons to stress tolerance                                     Another key finding was the link between transposons and cryptic TSSs. The scientists found that up to 65% of cryptic TSSs originated within these 'jumping genes', which were longer and more heavily methylated that transposons without cryptic TSSs.                                    "This suggests that transposons with cryptic TSSs are younger, intact and still able to jump around the genome, which is why they are silenced," explained Dr. Le.                                    Strikingly, the scientists noticed that when the cryptic TSSs were activated in the epigenetic mutants, this changed the activity of nearby genes involved in stress and development. The scientists don't yet fully understand the mechanism behind this impact, but the implications are intriguing.                                   "There is previous research that shows that over time, as transposons degrade, plants can adapt the TSSs in transposons for their own use, to regulate the activity of nearby genes," said Prof Saze. "The effect of the activated cryptic TSSs on stress and development genes suggests that in the future, plants could use these TSSs to adapt to changing conditions."                                    In future research, the scientists hope to learn more about these cryptic TSSs and how they affect the activity of nearby genes. "This study might help us to better understand how plants respond to environmental changes such as global warming, drought and nutrient degradation in soil. It may then be possible to develop new crops which are resistant to these kinds of stress," Prof. Saze said.

[前沿资讯] 茄子种子萌发前代谢的分子动力学研究 进入全文

植物生物技术Pbj

茄子在世界范围内被广泛种植,茄属植物主要通过种子繁殖。然而,茄子及其野生近缘属种子存在休眠和低发芽率/均匀度的问题,影响了野生近缘属作为茄子和其他相容性作物品种的砧木的使用,对种业产生了巨大的经济影响。种子引发(seed priming)技术是基于种子萌发的生物学机制提出的。目的是促进种子萌发,并且提高萌发时间的稳定率和萌发整齐率,减小萌发时间的标准差,提高苗的抗性和素质、改善营养状况。引发主要通过渗透调节、温度调节、气体调节和激素调节等来达到目的。引发的主要方法有液体引发、水引发、固体基质引发和生物引发等。                                       近日,Horticulture Research 在线发表了意大利帕维亚大学(University of Pavia)Alma Balestrazzi团队题为Molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds 的研究论文。                                      该课题组利用已有参考基因组和转录组的茄子自交系‘67/3’进行研究。研究发现,当应用于不同质量批次的种子时,水引发方案效果较好。水引发时,活性氧(ROS)在水解过程中升高,干燥后下降。在加氢和随后的吸胀过程中观察到抗氧化/DNA修复基因的上调。在吸胀后2 h,受引发的种子中检测到SmOGG1基因的上调。在该结果的基础上,将研究限制在吸胀的前2 h内,以验证该现象在不同批次中是否具有可重复性。结果表明,只有低品质的茄子种子在干燥和吸胀状态下表现出较高的活性氧水平,这对于区分种子品质优劣可能有用。然而,茄子前期生殖代谢的可塑性受到启动的刺激,造成了大量的异质分子反应,这可能会影响寻找优质的分子标记。                                     茄子的种子引发是一种复杂的现象,受到环境和遗传双因素的影响,该研究收集到的信息将有助于今后开展园艺作物,特别是茄科及其面临严重种子质量问题的野生近亲DNA损伤反应的其他基本方面的研究工作。就茄子的具体情况而言,需要在种子数量和植物基因型水平上进行更大规模的筛选,以解决目前种子引发技术发展道路上的难题。

[前沿资讯] Development of a small sensor capable of continuously monitoring the phytohormone ethylene 进入全文

EurekAlert

NIMS和AIST开发了一种能够连续监测植物激素乙烯的小型传感器。乙烯气体可以促进水果和蔬菜的成熟,但过度暴露会导致腐烂。这种新型小型传感器可通过连续检测乙烯气体来监测水果和蔬菜,确保水果和蔬菜在运输和储存期间的新鲜度,并有助于减少食物浪费。 乙烯是水果和蔬菜释放的一种气体分子,是一种促进成熟的植物激素。新鲜农产品可通过在贮藏设备中引入乙烯,在采后人工催熟。连续监测这些设施中的乙烯浓度可以更准确地估计储存农产品的成熟进程,从而实现最佳的运输和储存时间表。这种潜在的好处使得农业和食品工业对开发小型、廉价的乙烯传感器有很高的需求。可以检测乙烯的小型传感器已经在市场上出售,但许多传感器只能在200~300℃的高温下工作。此外,利用半导体作为传感材料的商用传感器,由于其表面的高活性,可以同时探测其他气体分子(如酒精和甲烷)。因此,这些现有的传感器缺乏对乙烯的选择性敏感性。 在这个研究项目中,我们开发了一个小型的、高灵敏度的传感器,能够以高选择性检测乙烯。该传感器由三部分组成:一种高活性催化剂,可选择性地将乙烯转化为乙醛;一种与乙醛反应以释放酸性气体的试剂;以及一个对酸性气体非常敏感的SWCNT(单壁碳纳米管)电极。当分析物空气通过时,这种高活性催化剂可以反复将乙烯转化为乙醛。此外,该催化剂可以在接近室温(40℃)的条件下工作,从而使小型传感器节能。乙醛与试剂之间的反应产生的酸性气体会从SWCNT半导体中强烈吸收电子,从而改变半导体的电阻。这些特性和机制使传感器能够通过监视电阻变化,即使在极低的浓度(0.1ppm)下也能够选择性和灵敏地检测乙烯。该传感器有望有效地监测多种种类的新鲜农产品在存储中的乙烯浓度。例如,促进香蕉和猕猴桃成熟的乙烯浓度分别约为500ppm和10ppm:完全在传感器的有效灵敏度范围之内。 这种小型、节能、低成本的乙烯传感器被设计为与大数据集成和网络系统兼容,因此可能成为日本超智能社会愿景(society 5.0 initiative)在农业和食品行业付诸实践的重要工具。该研究小组正在设计不同类型的高活性催化剂,以开发可检测乙烯以外的气态分子的小型传感器。

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充